Inorganic Chemistry

Experimental and Theoretical Comparison of the Metallophilicity between d¹⁰-d¹⁰ Au^I-Hg^{II} and d⁸-d¹⁰ Au^{III}-Hg^{II} Interactions

José M. López-de-Luzuriaga,* Miguel Monge, M. Elena Olmos, and David Pascual

Centro de Investigación en Síntesis Química (CISQ), Complejo Científico-Tecnológico, Departamento de Química, Universidad de La Rioja, 26004 Logroño, Spain

Supporting Information

ABSTRACT: The heteronuclear Au^I/Hg^{II} complexes [Hg{AuR(μ -2-C₆H₄PPh₂)}₂] [R = C₆F₅ (1), C₆Cl₂F₃ (2)] were prepared by reacting [Hg(2-C₆H₄PPh₂)₂] with [AuR(tht)] (1:2) and further transformed into the Au^{III}/Hg^{II} species [Hg{Au(C₆F₅)Cl₂(μ -2-C₆H₄PPh₂)}₂] [R = C₆F₅ (3), C₆Cl₂F₃ (4)] by the addition of 2 equiv of PhI-Cl₂. The crystal structures of 1–3 display Au···Hg^{II} interactions, which in the case of 3 is the first Au^{III}···Hg contact described to date. Theoretical calculations on model systems of the C₆F₅ derivatives evidence that the attraction between Au^{II} or Au^{III} and Hg^{II} arise from dispersion-type interactions and that both contacts are of the same strength.

T he construction of molecular architectures based on metallophilic interactions between Au^{I} and closed-shell centers has been the subject of many investigations because the resulting materials present a rich solid-state chemistry, often showing unusual stoichiometries and structures, and also because they usually exhibit an impressive display of tunable photoluminescent, piezochromic, or vapochromic properties of relevance for applications in luminescence signaling and vapochemical sensing¹ or are applicable in electronics or catalysis.²

Our group has contributed a number of examples of interactions of Au^I with Ag^I, Tl^I, or Bi^{III}, using the acid–base strategy,³ Cu^I, through transmetalation reactions,⁴ Pd^{II}, using heterobidentate ligands,⁵ or very recently, Hg^{II}, taking advantage of the strong acidity of $[Hg(C_6F_5)_2]$ and of the resemblance of the $[Au(PR_3)]$ unit with hydrogen, using the isolobality concept.⁶ Theoretical calculations on these interactions have allowed us to describe their nature and quantify their strength, being very helpful in the rational design of the synthesis of these types of complexes. Thus, the energy of these contacts range from 35 $(Au^I \cdots Pd^{II})^5$ to 276 kJ mol⁻¹ $(Au^I \cdots Tl^I)$,⁷ and they include different contributions: dispersive in the weakest interactions and ionic plus dispersive in the strongest ones. In particular, gold and mercury, with the largest relativistic effects, display the strongest correlation effects.

Continuing with these studies, our aim was to gain insight into the influence of the oxidation states on the metallophilicity by comparing the strength of $d^{10}-d^{10}$ contacts with that of $d^{10}-d^8$ ones in species with the same counterparts. Thus, we prepared heterometallic complexes containing Au^I or Au^{III} as d^{10} or d^8 centers and a heterometal that showed higher dispersive forces with gold and significant contributions from relativistic effects (Hg^{II}) . Therefore, here we report the synthesis, structural characterization, and theoretical studies of $Au^{I}-Hg^{II}$ and $Au^{III}-Hg^{II}$ complexes with diphenylphosphino-2-phenyl bridging ligands.

The synthesis of heterotermetallic $Au^{I}-Hg^{II}$ complexes $[Hg{AuR(\mu-2-C_{6}H_{4}PPh_{2})}_{2}]$ $[R = C_{6}F_{5}$ (1), $C_{6}Cl_{2}F_{3}$ (2)] was achieved by the reaction of $[Hg(2-C_{6}H_{4}PPh_{2})_{2}]$ with 2 equiv of [AuR(tht)] (tht = tetrahydrotiophene; Scheme 1) in dichloro-

methane. The labile tht ligands are displaced by the P atoms of the bidentate ligands, and both products are obtained as white solids with analytical and spectroscopic data in agreement with the proposed stoichiometries [see the Supporting Information (SI) for details].

By reacting suspensions of 1 and 2 with 2 equiv of the adduct $PhI \cdot Cl_2$ in dichloromethane, colorless solutions are formed, from which complexes $[Hg{AuRCl_2(\mu-2-C_6H_4PPh_2)}_2]$ $[R = C_6F_5$ (3), $C_6Cl_2F_3$ (4)] are obtained as pale-yellow solids (see Scheme 1), with analytical and spectroscopic data in agreement with the proposed stoichiometry (see the SI).

The crystal structures of 1–3 were determined by X-ray diffraction (see the SI) from single crystals obtained by the slow diffusion of *n*-hexane into a solution of the complex in tetrahydrofuran (1) or dichloromethane (2 and 3). The three crystal structures consist of a central Hg^{II} center linked to two [Au^IR] (1 and 2) or *cis*-[Au^{III}RCl₂] (3) moieties via metallophilic interactions reinforced by the presence of two 2-C₆H₄PPh₂ bridging ligands (Figures 1 and 2). These types of intermetallic contacts are rather uncommon because there are only a few examples of complexes displaying Au^{I...}Hg^{II} contacts,^{6,8} and they are usually supported by ancillary ligands.^{8a-c}

It is worth noting that complex 3 contains the first Au^{III}...Hg^{II} contact described to date. Although a couple of Au/Hg

Received: December 10, 2013 Published: January 14, 2014

Figure 1. Crystal structures of **1** (left) and **2** (right). Selected bond lengths [Å] for **1**: Hg–Au 3.1222(3), Hg–C12 2.122(8), Au–C1 2.048(8), Au–P 2.2813(18). Selected bond lengths [Å] for **2**: Au–Hg 3.1950(3), Hg–C11 2.107(4), Au–C1 2.061(5), Au–P 2.2864(12).

Figure 2. Crystal structure of 3. Selected bond lengths [Å]: Hg–Au 3.3973(3), Hg–C11 2.096(5), Au–C1 2.027(6), Au–P 2.3093(15), Au–Cl2 2.3194(15), Au–Cl1 2.3430(15).

complexes previously reported contain Au^{III} and Hg^{II} centers in the same molecule,^{8a,b} no interaction between them is observed, and only a weak Au^I...Au^{III} contact of 3.404(2) Å appears in one of them.^{8a} By contrast, complex 3 displays a Au–Hg distance of 3.3973(3) Å, indicative of an unprecedented Au^{III}...Hg^{II} interaction. In spite of the smaller size of Au^{III} compared to Au^I, this distance is even shorter than some of the Au^I–Hg^{II} separations observed in other compounds that display such contacts, which vary from 3.4983(3) to 3.6531 Å.^{6b,8d} Nevertheless, the Au–Hg distances in both 1 and 2 [3.1950(3) and 3.1222(3) Å, respectively], as well as the rest of the Au–Hg distances reported to date,^{6,8} are shorter than those in complex 3.

The Hg–C bond distances are similar in the three compounds, lying in the range of Hg–C bond lengths previously described for related Au/Hg compounds [from $2.068(11)^{6b}$ to 2.161(17) Å^{8a}]. As for the Au–Hg distances, the Au–P bond length in 3 is longer than those in 1 and 2, and it is also longer than those in related Au/Hg systems.⁶ Nevertheless, the Au–C bond distances are all of the same order and similar to those in the heterometallic compounds cited above [from 2.052(6) to 2.081(6) Å].⁶ If the Au-Hg interactions are considered, a perfect square-planar environment is found for the Hg atoms in 1 and 2, while the Au–Hg–Au angle in 3 is only of 145.562(13)°, a value similar to that previously described in [Hg{CH₂P(S)Ph₂}₂(AuCl)₂] (151.8°).^{8a}

To explain the nature of the Au^{III}···Hg^{II} and unprecedented Au^{III}···Hg^{II} interactions, we carried out theoretical calculations at density functional theory (DFT), Hartree–Fock (HF), and Moeller–Plesset second-order perturbation theory (MP2) levels of theory. We optimized the simplified dinuclear model systems $[HgAu(C_6F_5)(C_6H_5)(2-C_6H_4PH_2)]$ (1a) and $[HgAu(C_6F_5)-Cl_2(C_6H_5)(2-C_6H_4PH_2)]$ (3a), which represent one of the

metallophilic Au…Hg interactions observed in each case. Figure 3 depicts the optimized models 1a and 3a at HF and MP2. At the

Figure 3. Optimized model systems **1a** and **3a** at the HF and MP2 levels of theory.

HF level, none of the models display intermetallic interactions, in contrast with the experimental structural disposition. However, when correlation effects are included at the MP2 level the Au^{I...} Hg^{II} and Au^{III}...Hg^{II} interactions are observed at distances slightly shorter than the experimental ones: 2.93 vs 3.12 Å (1a) and 2.99 vs 3.40 Å (3a). Note that the MP2 level exaggerates the metallophilicity,⁹ but we can conclude that the attraction between Au^I or Au^{III} and Hg^{II} arises from dispersion-type interactions.

Two unbridged model systems, $[Hg(C_6H_5)_2]\cdots[Au(C_6F_5)-(PH_3)]$ (1b) and $[Hg(C_6H_5)_2]\cdots[Au(C_6F_5)Cl_2(PH_3)]$ (3b), were built up to account for the Au^I...Hg^{II} and Hg^{II}...Au^{III} interaction strengths, making use of the counterpoise correction of the basis-set superposition error (BSSE; see the SI). In model 1b, the mononuclear fragments were forced to be perpendicular to each other in order to exclusively study the metallophilicity, and the interaction energy was evaluated at different intermetallic distances at the HF and MP2 levels of theory (Figure 4). The HF

Figure 4. Model system 1b (left) displaying the DFT-optimized monomers at the MP2-optimized equilibrium distance. Model system 3b (center) fully optimized at the MP2 level of theory. Interaction energy curves for model 1b at the HF and MP2 levels of theory (bottom). The curves represent the BSSE-corrected interaction energies with respect to the Au–Hg distance.

curve is repulsive, whereas the MP2 curve displays a minimum at 3.11 Å (exp. 3.12 Å) with an interaction energy of -38.9 kJ mol⁻¹. This interaction is of similar nature but weaker than the one previously described in model $[Hg(C_6F_5)_2]\cdots[Au(C_6F_5)-(PH_3)]$, which led to a stabilization energy for the Au^I···Hg^{II} contact of -73.3 kJ mol^{-1.6a} If we assume that the dispersion-type component is obtained when correlation effects are included at the MP2 level, we conclude that the Au^I···Hg^{II} interaction in **1b** arises from dispersive forces. In model **3b**, ligand disposition in the optimized fragments made analysis of the Au^{III}···Hg^{II} interaction very difficult, and we used a fully optimized model **3b** at the MP2 level of theory. The local minimum includes Au^{III}····Hg^{II} and a weak C–H···F hydrogen bond, which seems to be

favored when the supporting ligand is broken. In order to account for the isolated $Au^{III}{\cdots}Hg^{II}$ interaction, we built up a third model of complex 3, $[Hg(C_6H_5)_2] \cdots [Au(C_6F_5)Cl_2(PH_3)]$ (3c), in which the metallophilic Au^{III}...Hg^{II} interaction is avoided and C-H…F is estimated (see the SI). If we subtract the interaction energy obtained from model 3c from that obtained for model **3b**, we can approximately account for the Au^{III}…Hg^{II} interaction. This strategy has previously been employed by some of us, leading to good results.⁶ The overall MP2 stabilization energy obtained at the equilibrium distance of 3.09 Å (exp. 3.40 Å) for model 3b was -60.6 kJ mol⁻¹, while at the HF level, a repulsive behavior was found. The MP2 stabilization energy obtained at the equilibrium distance of 2.53 Å (exp. 2.39 Å) for model 3c was -13.8 kJ mol⁻¹, corresponding to the stabilization energy produced by the C-H…F hydrogen bond. Thus, the energy difference between 3b and 3c of -46.8 kJ mol⁻¹ corresponds to the energy estimated for the Au^{III}...Hg^{II} contact, which is slightly stronger than the Au^I...Hg^{II} contact (-38.9 kJ mol^{-1}) with a similar dispersive origin.

Because the stabilization energies obtained for the Au^I...Hg^{II} and Au^{III}...Hg^{II} interactions are quite similar, although the interactions are formally different $(d^{10}-d^{10})$ and $d^{10}-d^8$, respectively), we carried out analysis of the natural bond order (NBO) charges (MP2 density) for models 1b and 3b and for the corresponding monometallic fragments (see the SI). The $[Hg(C_6H_5)_2]$ fragment displays a similar charge on the Hg^{II} center for model 1b (1.121+) and model 3b (1.185+), indicating that the charge of the Hg^{II} center is similarly affected upon interaction with the formally Au^I or Au^{III} centers. Analysis of the separated $[Hg(C_6H_5)_2]$ fragment for each model displays a similar charge on the Hg^{II} center for model 1b (1.115+) and model **3b** (1.151+), indicating that the NBO charge on Hg^{II} is very similar to the one obtained when this metal ion interacts with the Au centers in the corresponding models. If we analyze the Au^I or Au^{III} centers, the results of the NBO charges are different. While the Au^I charge in model 1b (0.318+) is very similar to the one in the mononuclear fragment (0.328+), in model **3b** the Au^{III} center displays a charge of 0.384+, lower than that obtained in the free Au^{III} fragment (0.491+). These results would indicate that when the Au^{III} fragment interacts with the Hg^{II} center in model **3b**, the charge on the Au^{III} atom is close to that observed in model 1b. If we compare the NBO charges of model 3b with the ones obtained for the free Au^{III} fragment, we observe that the Au center, in the absence of Hg^{II}, displays a higher positive charge but that, upon interaction with Hg^{II}, the Au^{III} center becomes very similar to Au^I through a transfer of electron density, mainly from the P-donor ligand.

ASSOCIATED CONTENT

Supporting Information

X-ray crystallographic data in CIF format for 1-3 and experimental and theoretical details. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: josemaria.lopez@unirioja.es.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the DGI Project (MINECO)/ FEDER (CTQ2010-20500-C02-02). D.P. thanks the C.A.R. for a grant. The Centro de Supercomputación de Galicia is acknowledged for computational resources.

REFERENCES

(1) (a) Fernández, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pérez, J.; Laguna, A.; Mohammed, A. A.; Fackler, J. P., Jr. J. Am. Chem. Soc. 2003, 125, 2022. (b) Fiddler, M. N.; Begashaw, L.; Mickens, M. A.; Collingwood, M. S.; Assefa, Z.; Bililign, S. Sensors 2009, 9, 10447.
(c) Elosua, C.; Bariain, C.; Matias, I. R.; Arregui, F. J.; Vergara, E.; Laguna, M. Sens. Actuators, B 2009, 137, 139. (d) Lim, A. H.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2011, 133, 10229. (e) Ito, H.; Saito, T.; Oshima, N.; Kitamura, N.; Ishizaka, S.; Hinatsu, Y.; Wakeshima, M.; Kato, M.; Tsuge, K.; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 10044.
(f) Lasanta, T.; Olmos, M. E.; Laguna, A.; López-de-Luzuriaga, J. M.; Naumov, P. J. Am. Chem. Soc. 2011, 133, 16358.

(2) Schmidbaur, H. Gold—Progress in Chemistry, Biochemistry and Technology; John Wiley & Sons, Inc.: New York, 1999.

(3) (a) López-de-Luzuriaga, J. M. In Modern Supramolecular Gold Chemistry; Laguna, A., Ed.; Wiley-VCH: Weinheim, Germany, 2008; p 347. (b) Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M. Dalton Trans. 2007, 1969. (c) Fernández, E. J.; Laguna, A.; Lasanta, T.; Lópezde-Luzuriaga, J. M.; Montiel, M.; Olmos, M. E. Inorg. Chim. Acta 2010, 363, 1965. (d) Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Olmos, M. E.; Puelles, R. C. Z. Naturforsch. 2009, 64b, 1500. (e) Laguna, A.; Lasanta, T.; López-de-Luzuriaga, J. M.; Monge, M.; Naumov, P.; Olmos, M. E. J. Am. Chem. Soc. 2010, 132, 456. (f) Fernández, E. J.; Garau, A.; Laguna, A.; Lasanta, T.; Lippolis, V.; López-de-Luzuriaga, J. M.; Montiel, M.; Olmos, M. E. Organometallics 2010, 29, 2951. (g) Arca, M.; Aroz, T.; Gimeno, M. C.; Kulcsar, M.; Laguna, A.; Lasanta, T.; Lippolis, V.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E. Eur. J. Inorg. Chem. 2011, 2288. (h) Blake, A. J.; Donamaría, R.; Fernández, E. J.; Lasanta, T.; Lippolis, V.; López-de-Luzuriaga, J. M.; Manso, E.; Monge, M.; Olmos, M. E. Dalton Trans. 2013, 42, 11559.

(4) (a) Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Montiel, M.; Olmos, M. E. *Inorg. Chem.* 2005, 44, 1163.
(b) Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Montiel, M.; Olmos, M. E.; Rodríguez-Castillo, M. Organometallics 2006, 26, 3639. (c) Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Montiel, M.; Olmos, M. E.; Rodríguez-Castillo, M. Dalton Trans. 2009, 7509. (d) López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pascual, D.; Rodríguez-Castillo, M. Inorg. Chem. 2011, 50, 6910. (e) López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pascual, D.; Rodríguez-Castillo, M. Organometallics 2012, 31, 3720.

(5) Crespo, O.; Laguna, A.; Fernández, E. J.; López-de-Luzuriaga, J. M.; Jones, P. G.; Teichert, M.; Monge, M.; Pyykkö, P.; Runeberg, N.; Schütz, M.; Werner, H.-J. *Inorg. Chem.* **2000**, *39*, 4786.

(6) (a) López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pascual, D.; Lasanta, T. *Chem. Commun.* **2011**, *47*, 6795. (b) Lasanta, T.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pascual, D. *Chem.—Eur. J.* **2013**, *19*, 4754.

(7) Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Mendizabal, F.; Monge, M.; Pérez, J. *Chem.—Eur. J.* **2003**, *9*, 456.

(8) (a) Wang, S.; Fackler, J. P., Jr. Organometallics 1990, 9, 111.
(b) Wang, S.; Fackler, J. P., Jr. Acta Crystallogr. 1990, C46, 2253.
(c) Wang, S.; Fackler, J. P., Jr. Organometallics 1988, 7, 2415. (d) Burini, A.; Fackler, J. P., Jr.; Galassi, R.; Grant, T. A.; Omary, M. A.; Rawashdeh-Omary, M. A.; Pietroni, B. R.; Staples, R. J. J. Am. Chem. Soc. 2000, 122, 11264.

(9) Pyykkö, P.; Runeberg, N.; Mendizabal, F. Chem.—Eur. J. 1997, 3, 1451.